Professor Matthew E. Taylor
Matthew E. Taylor, Ph.D.
is Assistant Professor,
Allred Distinguished Professorship in Artificial Intelligence,
School of Electrical Engineering and Computer Science,
Washington State University. He is a member of the
IFAAMAS Board of directors.
Matt graduated magna cum laude with a double major in computer science
and physics from Amherst College in 2001. After working for two years as
a software developer, he began his Ph.D. work at the University of Texas
at Austin with an MCD fellowship from the College of Natural Sciences.
He earned his doctorate from the Department of Computer Sciences in
the summer of 2008, supervised by Peter Stone.
Matt then completed a two
year postdoctoral research position at the University of Southern
California with Milind Tambe and spent 2.5 years as an assistant
professor at Lafayette College in the computer science department. He is
currently an assistant professor at Washington State University in the
School of Electrical Engineering and Computer Science and is a recipient
of the National Science Foundation CAREER award. Current research
interests include intelligent agents, multi-agent systems, reinforcement
learning, transfer learning, and robotics.
His research focuses on agents, physical or virtual entities that
interact with their environments. His main goals are to enable individual
agents, and teams of agents, to
- learn tasks in real world environments that are not fully known when the agents are designed;
- perform multiple tasks, rather than just a single task; and
- allow agents to robustly coordinate with, and reason about, other agents.
He coauthored Transfer Learning via Inter-Task Mappings for Temporal Difference Learning, Critical Factors in the Empirical Performance of Temporal Difference and Evolutionary Methods for Reinforcement Learning, DCOPs Meet the Real World: Exploring Unknown Reward Matrices with Applications to Mobile Sensor Networks, Mitigating Multi-Path Fading in a Mobile Mesh Network, and Feature Selection and Policy Optimization for Distributed Instruction Placement Using Reinforcement Learning, Read the full list of his publications!
Watch Towards knowledge transfer between robots: Computers teach each other Pac-Man. Read Takes one to teach one: Computers teach each other how to play video games and Robot school starts at Pac-Man, ends with world domination. Read his LinkedIn profile.