Dr. Daniel Polani
Daniel Polani, Ph.D. is Principal Lecturer,
Department of Computer Science,
University of Hertfordshire and
Associate Editor of
Advances in Complex Systems.
His research is currently focused on information-theoretical models to
understand properties and possible mechanisms of self-organization for
the perception-action loop.
Daniel earned his PhD in 1996 at the University of Mainz (Germany) for
his
work about the Genetic Evolution of Self-Organizing Maps. In 1996–2000,
he was a research fellow at the University of Mainz, and in 1997 a
visiting researcher at the University of Texas in Austin. In 2000–2002
he
worked at the Institute for Neuro- and Bioinformatics at the University
of Luebeck (Germany). Since 2002, he is member of the Algorithms and
Adaptive Systems Research Groups at the University of Hertfordshire,
organizer of the EAL (Embodied Artificial Life) meetings and leader of
the SEPIA (Sensor Evolution, Processing, Information and Actuation)
group.
A central point of his research is the modeling and
understanding of complex and self-organizing and -adaptive systems.
Since 1996, this research direction is incarnated in two research
directions: the study of multiagent systems and of sensor evolution. In
multiagent systems, he has done work in the RoboCup framework, on
trading agent dynamics and on the emergence of social norms in agent
societies. His research on sensor evolution ranges from the conditions
driving the emergence of sensorics and their relation to biological
systems to fundamental questions about the principles guiding their
organization and that of the perception-action loop. In addition, in his
work he aims at the structuring of sensomotoric loops from first
principles.
Daniel is on the Board of Trustees of the RoboCup Federation and
reviewer for national and international research councils (e.g. UK, US,
Germany, Netherlands) as well as renowned international journals and
member of a large number program committees.
His research focuses on:
- Artificial Intelligence: Can we imitate the processes that
allow
animals and humans to take flexible decisions in a complex and difficult
environment? Being able to adapt themselves to different conditions
gracefully? Being able to absorb changes in the environmental
conditions? Can we do so incorporating learning ability, without
compromising generalization ability, without hand-coding all necessary
rules into a system? Are there general principles underlying intelligent
information processing in living beings which we can exploit without
having to resort to specialized solutions that vary from task to task?
- Artificial Life: This question is closely related to
Artificial
Intelligence. What makes living systems live? What are the mechanisms
that allow complexity arise in nature? What role play emergent and
self-organizing mechanisms in this context and can this role be
formalized? Can understanding of mechanisms for “life” teach us
something about how to achieve intelligence in artificial systems?
- Information Theory for Intelligent Information Processing: To
put
it
saucily: information theory is something like the logarithm of
probability theory. In early modern times the logarithm simplified
multiplication into addition which was more accessible to calculation.
Today, information theory transforms many quantities of probability
theory into quantities which allow simpler bookkeeping.
- Sensor Evolution: Speaking of information, living beings and
artificial agents survive by obtaining information from the environment.
Due to the physical limitations of the agents, not all environmental
information is gathered; the sensors will concentrate on relevant
information that is essential for the goal of the agent.
How is this selection process attained in nature? How can we copy it in artificial systems? How can new channels of environmental information be tapped and exploited by a system that originally accessed a different set of information channels? Can we make use of it in artefacts?
- Collective and multiagent systems: Among the most complex systems are systems of multiple coacting and coevolving agents. These systems are, in general, very difficult to describe and to design properly. Such systems provide a natural high-complexity environment for studies on artificial intelligence and artificial life and are ideal testbeds for theories about social interaction.