Archive for the ‘4D printing’ category

Nov 5, 2022

Micro 4D Printing Builds on Programmable Matter

Posted by in categories: 3D printing, 4D printing, biotech/medical, chemistry, robotics/AI

Objects that can transform themselves after they’ve been built could have a host of useful applications in everything from robotics to biomedicine. A new technique that combines 3D printing and an ink with dynamic chemical bonds can create microscale structures of alterable sizes and properties.

May 25, 2022

3D printing adds another dimension

Posted by in categories: 3D printing, 4D printing

Nina Notman learns how 4D printing is opening the door to unique smart materials whose applications may only be limited by our imaginations.

Smart materials are already part of our daily lives. From novelty mugs with thermochromic pigments that change colour when holding a hot drink, to photochromic prescription glasses’ lenses that darken when the sun is out, to hydrogels that expand to soak up liquid in disposable nappies and period products. But these are only the tip of the iceberg in terms of what smart materials – that can sense information about the environment around them and then act accordingly – are predicted to achieve in the future.

According to a recent Royal Society report, smart materials on the way include window glass that changes porosity in response to humidity, clothing that adapts to environmental conditions and self-healing concretes. ‘Animate materials could eventually have a transformative effect on all spheres of life,’ the report authors wrote.

Apr 24, 2022

Hackers could sabotage 4D printed objects to cause malicious failures

Posted by in categories: 4D printing, transportation

Attackers could gain access to printers and manipulate designs of parts such as aircraft propellers in ways that are difficult to detect.

Dec 24, 2021

Microbots in your blood could help destroy cancer

Posted by in categories: 3D printing, 4D printing, biotech/medical, nanotechnology, robotics/AI

4D printing works the same as 3D printing, the only difference is that the printing material allows the object to change shape based on environmental factors.

In this case, the bots’ hydrogel material allows them to morph into different shapes when they encounter a change in pH levels — and cancer cells, as it happens, are usually more acidic than normal cells.

The microrobots were then placed in an iron oxide solution, to give them a magnetic charge.

Continue reading “Microbots in your blood could help destroy cancer” »

Nov 18, 2021

Shapeshifting Microrobots that Fight Cancer on a Cellular Level

Posted by in categories: 4D printing, biotech/medical, robotics/AI

No, it’s not from a science fiction movie or from an episode of a popular kid’s television show. It’s real life. Researchers, in a proof-of-concept study, have made fish-shaped microrobots that are guided with magnets to cancer cells, where a pH change triggers them to open their mouths and release their chemotherapy cargo.

Scientists have previously made microscale (smaller than 100 µm) robots that can manipulate tiny objects, but most can’t change their shapes to perform complex tasks, such as releasing drugs. Some groups have made 4D-printed objects (3D-printed devices that change shape in response to certain stimuli), but they typically perform only simple actions, and their motion can’t be controlled remotely.

In a step toward biomedical applications for these devices, Jiawen Li, Li Zhang, Dong Wu and colleagues wanted to develop shape-morphing microrobots that could be guided by magnets to specific sites to deliver treatments. Because tumors exist in acidic microenvironments, the team decided to make the microrobots change shape in response to lowered pH.

Aug 24, 2019

What is 4D Printing?

Posted by in category: 4D printing

What is 4D printing technology?

Mar 15, 2019

4D printing multi-metal products with a desktop electrochemical 3D printer

Posted by in categories: 3D printing, 4D printing, engineering

Four-dimensional (4D) printing can create complex 3D geometries that react to environmental stimuli, opening new design opportunities in materials science. A vast majority of 4D printing approaches use polymer materials, which limit the operational temperature during the process of engineering. In a recent study, Xiaolong Chen and co- workers at the Dyson School of Design and Engineering, Department of Earth Science and Engineering and Department of Materials at the Imperial College of London, U.K., developed a new multi-metal electrochemical 3D printer. The device was able to construct bimetallic geometries by selectively depositing different metals with temperature-responsive behavior programmed into the printed structure. In the study, they demonstrated a meniscus confined electrochemical 3D printing approach using a multi-print head design and nickel and copper materials as examples, the ability can be transferred to other deposition solutions. The results are now published in Scientific Reports.

Read more

Feb 11, 2019

ScienceAlertVideosA Week in Science with RiAus

Posted by in categories: 3D printing, 4D printing, science

Forget about 3D printing, the future is 4D printing creates shapes that can assemble themselves into predetermined 3D structures. The structures are made of plastic and smart memory materials that morph into different shapes. Discover more about this amazing technology in A Week in Science by RiAus.

Read more

Feb 10, 2017

Intel researches tech to prepare for a future beyond today’s PCs

Posted by in categories: 3D printing, 4D printing, computing, quantum physics

Glad Intel is moving this dial on their side as I have said for over a year they must do this to remain relevant. I would also encourage them to enter into a large 3D/4D printer partnership to develop a high speed printer that can print diamoide particles as they will need this bi-product to ensure stability in their chips and any other QC data storage and transfer processing. I do say they will need a group focused on Quantum Bio R&D as we begin to progress more of a integrated tech-bio system approach.

Intel realizes there will be a post-Moore’s Law era and is already investing in technologies to drive computing beyond today’s PCs and servers.

The chipmaker is “investing heavily” in quantum and neuromorphic computing, said Brian Krzanich, CEO of Intel, during a question-and-answer session at the company’s investor day on Thursday.

Continue reading “Intel researches tech to prepare for a future beyond today’s PCs” »

Jan 8, 2017

Synthetic diamonds could one day replace GPS

Posted by in categories: 3D printing, 4D printing, biotech/medical, robotics/AI

Syn Diamonds is a field that I have been educating many on the importance of in areas of QC, healthcare/ medical, and now we’re looking at transportation such as driverless cars. I told folks if we could have a joint venture with Intel and HP in this space; we could see these to companies re-emerge as leaders again just for this one area of technology. Who ever comes up with the 3D or 4D printer that can mass produce the quality we need in syn diamond materials in various scales/ sizes will dominate and make billions as this technology is a core piece to QC.

Lab-grown red diamonds with an atomic defect could one day replace GPS systems thanks to their remarkable sensitivity to magnetic waves, scientists have suggested.

A team at Element Six, a tech company based in Oxfordshire, are exploring the remarkable properties of crystals with a so-called ‘nitrogen vacancy defect’ — a gap in the atomic lattice at the heart of the diamond.

Continue reading “Synthetic diamonds could one day replace GPS” »

Page 1 of 3123